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SIMON NEWCOMB, PERCY DANIELL, AND THE HISTORY OF ROBUSI

ESTIMATION 1885-1920.

by

Stephen M. Stigler

The University of Wisconsin, Madison

0. Introduction

In the eighteenth century, the word "robust" was used to refer

to someone who was. strong, yet boisterous, crude, and vulgar. By 1953

when Box first qave the word its statistical meaning, the evolution of

language had eliminated the negative connotation: robust meant simply

strong, hardy, healthy. The subject of robust inference, just like the

word "robust", has a long and varied history. It is the aim of this

present study to examine a part of this history and its relationship to

current work.

The scope of this paper will be rather narrow - we shall only be

concerned with the mathematical background and development of robust

estimation up to 1920. Thus we shall be less concerned with the first

appearances of estimators such as the median and trimmed mean than with
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the first mathematical analyses of their behavior and properties. The

main emphasis will be on the period 1885-1920, and particular attention

will be given to work which is not widely known, yet is relevant to

modern lines of thought. Section two discusses the contributions of

Simon Newcomb to robust estimation, and to the use of normal mixtures as

models for heavy-tailed distributions; section three is concerned with

the history of the mathematical analysis of order statistics in relation

to robust estimation, with due attention to the works of Laplace,

Sheppard, and Percy Daniell; and section four contains some brief remarks

on "M-estimators".

The reader may be as surprised as the author was to find to

what extent priorities in these areas have been misassigned. While many

other points will be touched upon in the paper, our major findings are

as follows: Laplace (1818) and Sheppard (1899) seem to have been the

first to present a large sample theory for one or two order statistics.

Simon tlewcomb (1886) provided the first sound, modern approach to robust

estimation, including the first use of mixtures of normal densities as

representing heavy-tailed distributions. Percy Daniell (1920) should be

credited with the first mathematical analysis of the class of estimators

which are linear functions of order statistics, including the derivation

of the optimal weighting functions for estimating scale and location

parameters (the so-called "ideal" linear estimators) and the first

mathematical treatment of the trimmed mean. Some of Newcomb's work has

been commented upon recently by Huber (1972), but much of the remainder

of the work discussed in this paper, including that due to Edgeworth,
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Galton, Laplace, Sheppard, and Daniell, has been largely ignored in

recent years.

We shall begin with a brief overview of the situation prior to 1885.

1. The Situation before 1885.

Scientists have been concerned with what we would call "robustness" -

sensitivity of procedures to departures from assumptions, particularly the

assumption of normality - for as long as they have been employing well-

defined procedures, perhaps longer. For example, in the first published

work on least squares, Legendre (1805) explicitly provided for the rejection

of outliers:

"If among these errors are some which appear too large to be admissible,
then those equations which produced these errors will1be rejected, as
coming from too faulty experiments, and the unknowns will be determined
by means of other equations, which will then give much smaller errors".

Yet most of the early work in mathematical statistics was obsessed with

"proving" the method of least squares, either starting with the assumption

that the sample mean is the best estimate of the mean and deriving the

normal distribution, as Gauss did in his first proof in 1309, or starting

with the normal law or the central limit theorem, as did Laplace in 1812.

The first mathematical work on robust estimation seems to have been that of 4

Laplace (1818) on the distribution of the median. We shall defer a discussior;

of Laplace's work until section three, where it will be considered with

later work on linear functions of order statistics.

The next statistical problem connected with robust estimation to

receive mathematical treatment was the rejection of outliers. In 1852,
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the first proposal of a criterion for the determination of outliers was

published by Benjamin Peirce, the Harvard mathematician-astronomer and

father of logician-philosopher C. S. Peirce. Peirce's paper and most others

on this subject are not really about robust estimation, as their authors

did not concern themselves with the properties of the resulting estimators;

rather, they implicitly assumed that after the outlier test was performed

the estimation could be done with no thought given to what had gone before,

nor what information might be lost. This narrowness of view did not go

unnoticed at the time. The first paper proposing an outlier criterion

(Peirce, 1852) was soon followed by the first paper criticizing the use

of outlier criteria (Airy, 1856). Airy, the Astronomer Royal, wrote:

"And I have, not without surprize to myself, been led to think that
the whole theory is defective in its foundation, and illusory in its
results; that no rule for the exclusion of observations can be
obtained by any process founded purely upon a consideration of the
discordance of these observations".

A lively debate ensued, with the participants not always expressing them-

selves with Airy's restraint. For example, Glaisher (1872) wrote "Professor

Pierce's [sic] criterion for the rejection of doubtful observations seems
**

to me to be destitute of scientific precision".

One of the more interesting papers of this time (and one of the

most unusual statistical papers of all time) appeared in the I_•poft nf

the Superintendent of the U.S. Coast Survey for 1870. It is by C. S. Peirce,

See Anscorme (1960) and Rider (1933) for historical surveys of outlier
techniques.

At one point an exchange in print between the mathematician Glaisher
and the astronomer Stone became so heated that one of Glaisher's papers
was itself rejected by the Monthly Notices of the Royal Astronomical
Society due to the personal nature o- is comments; see G aTser 1T8"74N.
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written while he was an Assistant to the Coast Survey (at the time his

father was Superintendent of the Survey!). In ýhe paper Peirce presented

the then standard material of the theory of errors, but in the language

and notation which he had developed for the logic of relations, for

which he later became famous. Thus we find, regarding averages,

"Since [m] denotes all men, we may naturally write .Lml to denotem
what all men become when that factor is removed which makes [m]
refer to men rather than to anything else; that is to say, to denote
the numbe'rTf men. We may write this for short (mi with heavy
brackets. Then t being a relative term ("a tooth of,") by (0tJ
will be denoted the total number of teeth in the universe. But

rtiiLtJ will be used as equivalent to •I, or the average number of
teeth that anything has."

Peirce included a sensible - one is tempted to say "logical" - defense of

his father's outlier criterion in the paper (p. 210). By 1885 a number

of rejection criteria were in use, often only by the proposer and his employees.

But techniques other than simply "reject outliers, then use the

sample mean" were also employed. A variety of weiqhted means had been

used prior to 1885. For example, in 1763 James Short (an English astronomer

and noted manufacturer of telescopes) had estimated the sun's parallax

based on observations of the transit of Venus of 1761 by averaging three

means: the sample mear,, the mean of all observations with residuals less

than one second, and the mean of those with residuals less than half a

second. The median and the midrange had appeared even earlier

(Eisenhart (1971)).

By the last half of the nineteenth century, weighted least

squares had become a standard topic in the literature of the theory of

errors, and it was a frequent practice (at least in astronomical
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investigations) to weight observations differently, depending upon the

statistician's (often subjective) estimate of the "probable error" of

the observation. The estimate of the probable error was supposed to be

based solely on external evidence: scientists were warned of the possible

biases if the magnitude of the observation were allowed to influence its

weight (see Jevons (1874, p. 450), for example), but it is doubtful that

this advice was faithfully adhered to. We shall discuss the use of these

weighted means further in the next section, in connection with the

contributions of Simon Newcomb.

Other estimators were Proposed in this period. In particular,

De M4organ (1847, p. 456) .. scheme for discounting the more

extreme observations.' T7':. uiethod, irw'ir fully developed by Glaisher (1873),

amtue-,•eo to starting with Týhe sample wean, then assigning different probable

errors to the different observations based on the value of the likelihood

function at those observations, and iterating this process. Glaisher's

estimate was criticized by both Stone (1873) and Edgeworth (1883), who

both (independently) proposed an alternative based on looking at a local

maximum of the likelihood function (without assuming equal probable errors).

Edgeworth later became disenchanted with this alternative (Edgeworth, 18M7a).

At about this time, Francis Galton was making much use of the

median (Galton, 1875), although his motivation was less suspicion of the

normal distribution, which he considered a good representation of many

real phenomena, than an appreciation of the simplicity, ease of calculation,

t*

The probable error of a symmetric distribution is half the interquartile
range; for normal distributions p.e. = (.6745)o.
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and ease of interpretation of the median. Also, various formulae for

index numbers were developed during this period; these included weighted

averages and geometric means, each designed for a specific purpose.

However, it can still be said that by 1885, the conventional

wisdom (but by no means the unanimous view) was that for purposes of estination,

the cautious use of the sample mean was recommended - sometimes weighted,

sometimes after discarding outliers, but still the sample mean.

2. Simon Nlewcomb and mixtures of normal densities

1885 can be conveniently taken as the start of one of the most

active and innovative periods in the history of mathematical statistics.

The story of the development of mathematical statistics into a subject

in its own right through the work of such men as Edgeworth, Karl Pearson,

Gosset, and Fisher has been told by E. S. Pearson (1967). Our present,

rather narrow purpose is to describe how the modern theory of robust estim-

ation developed over this period. To this end, we shall place particular

emphasis on the introduction of mixtures as models for the heavy-tailed

distributions which scientists had encountered in practice, and on the

use of linear functions of order statistics as robust estimators of

location parameters.

Simon Newcomb appears to have been the first to introduce a mixture

of normal densities as a model for a heavy-tailed distribution, and to

exploit this model to got an estimator of location which was more robust

than the sample mean. (Francis Galton and Karl Pearson had modeled measure-

ments of natural populations by normal mixtures about the same time, but
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with a completely different object in mind, namely to demonstrate how a

single population could be broken down into comporents.) While Newcomb's

name may be unfamiliar to present day statisticians, it should not be so

to astronomers, applied mathematicians, and economists.

Simon Newcomb (1835-1909) was born in Nova Scotia, attended

Harvard, and spent most of his adult life (1861-1897) as a professor of

mathematics in the U.S. Navy, working for the U.S. Nautical Almanac

Office. He is generally regarded as the greatest American astronomer

of the nineteenth century, and was responsible for many of the determin-

ations of astronomical constar÷, which are still accepted today. In addition,

he was a powerful applied mathematician, co-founded and for many years

edited the American Journal of Mathematics, and as an avocation wrote

Principles of Political Econom (1885), a book which has established him

as a major American economic theorist, and which contains one of the

earliest modern mathematical statements of the quantity theory of money.

As was the practice in astronomy at the time, Newcomb made

frequent use of weighted means in his estimation of astronomical constants.

The relative weights were usually thought of in terms of "probable errors",

and were assigned somewhat subjectively on the basis of Newcomb's judgment

of the relative accuracy of the process which produced the observation.

For example, after assessing some data on eclipses collected by Ptolemy

in the second century A.D., he remarked (Newcomb, 1878, p. 41):

"the [assigned] probable errors are the result of judgment from the
terms of [Ptolemy's] description rather than of calculation; they
were estimated without any knowledge of the way the comparison with
theory would come out, and are orinted without subsequent alteration".

With more contemporary data, Newcomb would base his choice of weights
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upon "the quality of the image and the generally satisfactory way in

which the image was kept on the crosswires" (Newcomb, 1891a, p. 170) in the

case of an experiment he was peronsally involved with, and upon the

number of observers, general opinion of the reporting observatory, and

"number and force of the doubtful circumstances "(Newcomb, 1891b, p. 383),

in cases involving combination of other's measurements. He was apparently

aware of criticism cf the subjective nature of these assignments, but

he maintained that

"Opinions may doubtless differ as to whether a judicious system of
weights has always been applied, but it is not likely that any unbiased
reassi nment would materially affect the result". (Newcomb, 1898,
p. 211l

Newcomb also rejected outliers when necessary, but usually only based on

external evidence or really huge deviations.

With this experience in dealing with observations made with

differing degrees of precision, it is not surprising that, when faced with

a collection of nun-normal observations for which there was no satisfactory

way to weight them individually, he should consider a mixture of normal

densities with different variances as a model. For, having observed that

a collection of 684 residuals based on observations of the transits of

Mercury had much heavier tails than the corresponding normal distribution

(even with excessive deviations ignored), he wrote (Newcomb, 1882, p. 382):

"It is evident that if we have a collection of observations of
different degrees of probable error, *in which, however, there is no
way of distinguishing those of great probable error from those of
small probable error, the law of the errors will not be that usually
adopted, but there will be a comparative excess of large residuals.
It is also evident that in such a case the arithmetical mean does
not necessarily give the most probable result. For, in the case of an
observation of large residual, there is evidently a preponderance
of probability that it belongs to a class with large probable error,
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and therefore should be assigned least weight ... That any general
collection of observations of transits of Mercury must be a mixture
of observations with different probable errors was made evident to
the writer by his observations of the transit of May 6, 1878, which
may be here described as an illustration of the subject,"

Four years after writing this, Newcomnb published a remarkable

paper in his own journal, the Anwrican Journal of Mathematics, in which

he used this model to arrive at a more robust estimatur of location than

the sample mean. In this paper (Newcomb, 1886)*, after criticizing the

overuse of outlier criteria and presenting his mixture model, he proceeded

to develop an estimator upon the principles of Rlayesian decision theory that

gave "less weight to the more discordant observations". Adopting squared

error as a loss function (Newcoii's word for loss was "evil"), he deimenstrated

that in general the posterior mean minimizes the expected mean square error,

and he suggested the following procedure. 1) Calculate the residuals

based on the samole mean, and, using trial and error, fit a mixture of a

finite number of normal densities with zero nmans to these residuals.

2) Take this fitted mixture and, considering the location family it

generates, estimate the desired mean by the posterior mean with respect

to a uniform prior given the original observations. Newcomb realized that

this procedure presented practical difficulties and gave a number of

simplifying approximations to arrive at a usable estimator. He illustrated
**

its use with the data on the transits of Mercury.

Some of his arguments also appear in Newcomb (1895), p. 81-86.

Ogorodnikoff (1928) provided a different simplification of Newcomb's
estimator based on a Charlier expansion of the posterior distribution.
The relationship between Newcomb's simplified estimator and the maximum
likelihood estimator was discussed by Hulme and Symris (1939).
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As an intorostln(i sidol iht, we fote that iii this oaper (Ind in

a later work, Newc.mit) mada an early ukm of a simple vorsion o0 Tukey's

sensitivity function (soe Andrews Ot, al, , 1972, 1, 9), In NQwcomb

(1912, p. 212), discusinq tho unsati fatoury naturo of outliojr critoria,

he wrote that if all observations with larq• residuals art) rejected (and

the moan estimated from the remaining observations), then the final result

"becomos a discontintious ftunction of the rosidh•l of tho rojocted
obsorvation, the continuity beinq broken at the noi nt rotlardod as
tho limit of normal error. A simple examplo, will make the case
clear. If wo have three observed results a,h,,c of which the moan
is to be taken , and if c he the result which may ho abnormal, them
so lonq as c is retained we shall have

mean + b + c);

the mean will then continuously increase with c, When c passes
the normal limit, the mean chanqes per saltum to

b+ )".

In the same posthumous paper (N.wconm, 1912, p. 214), he also proposed a very

simple estimator in the spirit uf his 1886 paper: weight the observation

Xi by wi = c/max(txi-RI, c), where c is a constant to be specified.

3. Lapla~ee..Slheppard, Dan iell__and linear functions of order statistics

With few exceptions, statisticians were quite late in cominq to

consider any but the simplest linear functions of order statistics as

estimators of means. By a linear function of order statistics we shall

mean any weighted linear combination of observations where the weitihts

depend only on their order, not on their magnitudes or the size of their



ro~duahTho 1u0(iedit Ond tue Ilifi~radlillo two lowithorli of this lasss I videnitly

have 4 low) history (Lisenhia~ ( 111(4) , (1911/ ) ) , but pvrhojis tho fi iist

xteonsivu mItaomauitcal anilysis to ti published involvilill orttdr sta itiis

wai by Lapiaco, In tho %Ocond supplialiet (1W111 I) to hlis % naet

TyI Ialyttlyedes probohii 1t~$s Lapi aco Cons idorod tile probloim wo

would noi w Ctll la loar roqre ssion thimuqh thia oriqil; 41 ; PiV + n a

011 Pi known, y to bo estimated, wIherII the orrors xi (wro assumed to

hav an ardbitrary continuous, sylluiktriv, distribution, Bly looking for

that estimator which minimizod tho sum of the absolute values of the

rosiduals, hie was led to consider an estimator of y which reduces to

th" mcdiall of thl a i's in the case p1 : I, L.aplace derived the dlens Ity

of this ostimator, showed that this densitV approaches the normal donlsity

as thie %ample size increases, and eavo the necessary and sufficient

condition on the orror distribution that the median have a smaller

asymptotic variance than the sample moan, Laplace's proof is easily

adopted to any sample percentile and asyumpetrical populations, as was in

fact later noted by Edqeeworth (l185, 1886). In addition, Laplace derived

the joint asymptotic density of the sample mean and median, and used it

to find which linear combination of these estimators has the smallest

asymptotic variance. (As the weights depend upon the unknown error

distribution, he termed this result "impracticable" , but noted that itf the

error distribution were normal, the best linear coubination was the sample

Laplace actually carried through his entire investigation in the more
general regression situation, comparing the general estimator with the
least squares estimator for this situation. For other views of Laplace's
work and its historical context, see Eisenhart (1961) and Stigler (1972).
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1110411 Al ono1, TW lw~dVr boforo Lapi acol ivovs tfidt ioll, (Iauss (101(0)

ConsI idori nq 010 problb1ie of OW11i wtilit) tho peobablo e rvw (it a nmd

distribution, had su•q•qotod tho use of tho median of• thh Absolute

valu•s of tho ei dualis and statud (without proof) the asymptotic prbiable

error of the me1dian for this spocial case. C~idss5 apparently nover

published or circulated a proof, for la years, later Wncko (1034), who

had correspondt:d with Gauss, felt it necessary to provide one, attributing

it to Dirichlet, It sooms likely that Oirichlot's proof for this special

Case was simply an adaptation of Laplace's, as 01irichlot was quite

famil i ar with L.apl ace 's work, the second suppl unei t in particular (see

t~lirtichl t (1 s3G) ).

Later in the nineteenth century, Galton (1875) and particularly

Edgeworth (1885. 1887b, 1888), touted the use of the median in situations

where heavier tails than the nornal could be expected. Specifically,

Edgeworth (1888) used Laplace's results to conclude that the median may

well be better than the mean when the population distribution is one of

Newconb's mixtures of normal distributions. Also, Edgeworth (1886) seems

to have been the first to realize that the median may possess an

advantage over the sample mean for serially correlated data. 4

More complicated linear estimators began to appear in 1889,

when Galton (in a footnote on p. 61-62 of Natural Inheritance) suggested

estimating the mean and standard deviation of a normal distribution by

what am•unts to taking

The possibility of a linear function of two estimators outperforming both
has been more fully exploited in the recent Princeton robustness study

(see Andrews et. al (1972) p. 132).
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P 4q.,~ ×(,q)

where Pp and I, q are the p and q porconiti1os of tho standard nortnal

distribution, O(np) Mnd X("(1) aire the sample p and q porciitiI ls

and p and k are arbitrary but fixed (0 < p < q < 1). In 1899 in a

10onq paper on the mul ti variate noti1n1 distribution and its applications.

Sheipard proved the joint asymptotic normality of Galton's estinmtors

when the population is normal, He also showed the joint asymptotic
norm11ality of X(nr) and X(nq), and gave analoques to p and o based

on any finite number of sample percentiles (Sheppard, 1899, p. 131-132).

Sheppard's (sketchy) proof, which is based on an implicit use of the

probability integral transformation, can be easily adapted to any regular

distribution.

Sheppard's paper also represented the first attempt since Laplace

to optimize performance within a class of linear functions of order

statistics. He both showed how the best choice (for normal populations)

of p and q can be made (1899, p. 135) and found which linear

combination of the three quartiles has the smallest asymptotic variance

(again for normal populations) (1899, footnote, p. 134). Such functions

Twenty years later, Karl Pearson (1920) presented part of Sheppard's
proof in more detail, made the obvious step to nwre general distributions
than the normal, and much more fully examined the consequences of the result.



of the three quarti let had boon consi(Iurod earl ior by Ldgeworth (1893),

who neglocted the quartilos' correlation and erroneously claimed the

ostimator with woiqhts in proportions 5:7:5 to be superior to the sample

moan for normal populations. Recent work, however, seems to bear out

Ldgeworth's claim that such an estimator is to be recoitwinded on grounds

of robustness, (Soo Gastwirth (1966) and Andrews et, al. (1972), for

exampl e. )

The next mathematical work to appear on order statistics was

Karl Pearson's (1902) ;xamination of the Galton difference problem. In

this paper, which was inspired by an inquiry of Galton's (1902) as to the

most suitable proportion between the values of first and second prizes,

Pearson gave the joint density of any two consecutive order statistics

and found their expected difference. He remarked in a footnote that

"I propose on another occasion to consider the application of Galton's
problem to a new theory for the rejection of outlying individuals".

This proposal was later carried out by J. o. Irwin (1925).

In 1920, a remarkable paper appeared in the American Journal of

Mathematics (the journal Simon Newcomb co-founded) by the English mathe-

matician P. J. Daniell. This paper, "Observations weighted according to

order", has been all but totally overlooked since it's publication. It

could in fact be claimed that Daniell was at least thir , years ahead of

his time, for it took that long for his major results to be rediscovered.

While his paper itself is a model of clarity and rigor, its relevance to

modern work is such that it merits a short summary, in his own notation.

The work was apparently inspired by a reading of Poincar6's Calcul

des Probabilit6s (1912). After remarking how Poincar6 had suqgested dis-

L -- MIA
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carding extreme observations (when normality is suspect) before taking the

mean, Daniell wrote:

"Besides such a discard-average [ie. the trimmed mean] we might
invent others in vhich weights might be assigned to the measures
accordinq to their order. In fact the ordinary average or mean, the
median, the discard-averaqe, the numerical deviation (from the median,
which makes it a minimum), and the quartile deviation can all be
regnarded as calculated by a process in which the measures are multiplied
by factors which are functions of order. It is the general purpose
of this paper to obtain a formula for the mean square deviation of
any such expression. This formula may then be used to measure the
relative accuracies of all such expressions".

Daniell's analysis proceeded as follows: First he explicitly

introduced the probability integral transformation (apnarently the first

time this was done) and explained how it can be used to find the moments

of any function of order statistics. Then, he assumed the population

density p(t) was reqular (and indefinitely differentiable), and he

expanded the inverse of the distribution function in a Taylor series to

derive asymototic exnressions for the mean of an order statistic tr and

the mean product of any two. He thus duplicated some of Sheppard's (1899)

results, but in a much more rigorous manner.
n

Daniell then considered statistics of the form t , frtr,

where he assumed that the weight fr associated with the rth order

statistic tr was given by

Sn b( r)fr n f 'T

The next being Karl Pearson (1931).
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and put things together to obtain the (now standard ) expression for the

asymptotic variance of t,

S2 = f 4 2(t) p(t)dt,

t
where t(t) is the indefinite integral of f(x(t)), x(t) f p(u)du. If

he was less than specific as to why the remainder terms are uniformly

negligible, his standard of rigor was nonetheless far above that of the

statistical literature of the time.

In the third section of the paper, Daniell gave the conditions

on f under which the asymptotic mean of Z is the population mean or

standard deviation, and defined the "accuracy" of t as the ratio of the

asymptotic variance of the sample mean (or sample standard deviation,

as the case may be) to tlat of t. (He also derived the asymptotic variance

of the sample standard deviation here.) In the fourth section, Daniell

gave the optimal weight function f - that which minimizes S2 - for both

the location and scale cases, using standard results from the calculus of

variations, and noted that the optimal estimate of a for the normal case

is as accurate as the sample standard deviation in this case. These results

were not to appear in print again until Jung (1955), although they are in

Bennett's (1952) unpublished thesis.

The final two sections were concerned with applications. Daniell

gave special attention to the "discard-average" (the trimmed mean),

See Chernoff, Gastwirth, and Johns (1967).
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presenting the (now standard) expression for its asymptotic variance and

evaluating its performance for various Pearson densities, including

Student's t. He also gave conditions under which the quartile-discard

average is superior to the sample mean. The paper ended with a number

of applications to other estimators of location and scale *, with numerical

results. Daniell did not derive the asymptotic normality of f, nor did

he try to state minimal regularity conditions (indeed, some of his regularity

conditions were implied rather than stated). However, taken altogether

it is a thoroughly modern paper which almost appears to have been gleaned

from the literature of the 1950's and 1960's.
**

How could such a paper have gone unnoticed for all these years?

To see why, we need to learn something of Daniell's life. Percy John Daniell

(1889-1946) received a B.A. degree at Cambridge in 1910 (and an M.A. in

1914), where his honors included Senior Wrangler in Mathematics (1909),

First Class Physics Tripos (1910), and the Raleigh Prize (1912). His stay

at Cambridge would have overlapped R. A. Fisher's, but they were at

different colleges and may not have met. After graduation (and brief stays

at Gbttingen and Liverpool), Daniell went to Rice Institute in Houston,

Texas in 1912 as a travelling fellow. He remained at Rice until 1923,

becoming a full professor in 1920. It was at Rice he did his most important

work, principally on the theory of integration (including the development

of what is now known as the Paniell integral.) In 1924 he returned to

Including the "discard-deviation", where the inner quartiles are
discarded.

A fairly complete review of the literature reveals only two published
citations, Dodd (1922) and Greenberg (1968), and the descriptions there
are superficial and misleading. Daniell's paper came to my attention as
the result of a systematic inspection of the American Journal of Mathematics.
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England to the University of Sheffield, where he remained until his death

at the age of 57. In the latter part of his life he published occasional

papers on applied mathematics, on such topics as flame motion, potentials,

and quadrature formulae.

The paper, Daniell (1920), written at Rice, seems to have been

his only related work in statistics. This fact, together with his isolation

from active statistical research (both at Rice and Sheffield), was largely

responsible for the obscurity of the paper. Daniell's death before his

results were rediscovered and widely discussed, and Wilks' overlooking

his work in the survey paper of 1948 also served to delay recognition of

his priority. As a further irony, these circumstances have helped relegate

to obscurity another important paper of Daniell's, "Integral products and

probability" (1921), in which he presents one of the earliest mathematical

treatments of continuous time Markov processes, including the Chapman-

Kolmogorov equation (ten years before Kolmogorov) and a short treatment

of the Wiener process (two years before Wiener).

4. 14-estimators

Recently, much attention has been given to a class of robust

estimators which Huber calls "M-estimators", M for maximum-likelihood

type. (See Huber, 1972). T is said to be an M-estimator corresponding

to a function ý if T is a solution to YO(Xi - T) 0 0. Each choice of

b determines an estimator; if o = p'/p, T is the maximum likelihood

estimator for the location parameter of the population with density p(t - ci).
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As the first appearance of these estimators iii the context of robustness

seems to be in the work of Jeffreys after 1920 (see Jeffreys (1932) and

(1939) in particular), and as this work is outside the scope of this study,

we shall not dwell on this subject. However, we cannot resist calling

attention to an early reference in which the class of M-estimators is

introduced and their consistency claimed.

In a paper examining the various "proofs" of the method of least

squares, Ellis (1844) began with Gauss's first proof. Letting xi's

denote observed values, a the quantity to be estimated, and ei xi - a,

Ellis questions Gauss's a priori designation of the arithmetic mean (the

solution to )(xi - a) = 0) as the most probable value.

"It [the arithmetic mean] is not the only rule to which these
considerations might lead us. For not only is Ye = 0 ultimately,
but ýfe = 0, where fe is any function such that fe = -f(-e);
and therefore we should have

Xf(x-a) = 0,

as an equation which ultimately would give the true value of x when
the number of observations increases sine limite, and which therefore
for a finite number of observations may be loo-k'd on in precisely the
same way as the equation which expresses the rule of the arithmetic
mean. There is no discrepancy between these two results. At the limit
they coincide: short of the limit both are approximations to the
truth. Indeed we might form some idea how far the action of fortuitous
causes had disappeared from a given series of observations by assigning
different forms of f, and comparing the different values thus found
for a.

"No satisfactory reason can be assigned why, setting aside mere
convenience, the rule of the arithmetic mean should be sinqled out
from other rules which are included in the general equation Yf(x-a) = 0".

Thus Ellis has claimed (without proof or regularity conditions)
*,the consistency of M-estimators , and even suggested the class may be useful
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for judging to what degree an estimated value depends on the choice of

estimator, a stability test. Of course Ellis was not really concerned with

robustness, only with illuminating the arbitrary nature of Gauss's proof,

but his comments are of interest nonetheless.

A Note on the References

In addition to those works cited below, many other works were

consulted for references and general information. The information on

the life of Simon Newcomb came principally from the Encyclopeedia

Britannica, the International Encyclopedia of the Social Sciences, and

Nlewconm's autobiography (1903). The information on the life of Percy

Daniell came from various editions of Who's Who and American Men of

-cience, and Stewart (1947). Merriman's (1872) bibliography on least

squares was quite useful for the period prior to 1877. 1 would also like

to thank William Kruskal, Churchill Eisenhart, and Oscar B. Sheynin for

a nunmer of references and helpful comments. A good bibliography of

work since 1920 can be found in H. A. David's Order Statistics (1970).

Huber proved this in Huber (1964).



22

References

[1] Airy, G. B. (1856). Letter from Professor Airy, Astronomer Royal,
to the editor, Astronomical Journal 4, 137-138.

[2] Andrews, D. F., Bickel, P. J., HamDel, F. R., Huber, P. J., Rogers,
W. H., and Tukey, J. W. (1972). Robust Estimates of Location:
Survey and Advances. Princeton: Princeton University Press.

[3] Anscombe, F. J. (1960). Rejection of outliers. Technometrics 2,
123-1 47.

[4] Bennett, C. A. (1952). Asymptotic properties of ideal linear
estimators. Unpublished dissertation, University of Michigan.

[5] Box, G. E. P. (1953). Non-normality and tests on variances. Biometrika
40, 318-335.

[6] Chernoff, H., Gastwirth, J., and Johns, M. V. (1967). Asymptotic
distribution of linear combinations of functions of order
statistics with applications to estimation. Annals of
Mathematical Statistics 38, 52-72.

[7] Daniell, P. J. (1920). Observations weiqhted accordinq to order.
American Journal of Mathematics 42, 222-236.

[8] Daniell, P. J. (1921). Integral products and probability.
American Journal of Mathematics 43, 143-162.

[9] David, H. A. (1970). Order Statistics. New York: Wiley.

[10] De Morgan, A. (1847). Theory of Probabilities. Encyclopedia of
Pure Mathematics (Part of EnjcYClpedia Metroot

[11] Uirichlet, G. L. (1836). Ueber die Methode der kleinsten Quadrate.
In G. Lejeune Dirichlet's Werke, Vol. 1, 281-282. Berlin:Re i rn e --F-0-W91).

[12] Dodd, E. L. (1922). Functions of measurements under general laws
of error. Skandinavisk Aktuarietidskrift 5, 133-158.

[13] Edgeworth, F. Y. (1883). The method of least squares. Philosophical
Maoazine 16 (Fifth Series), 360-375.

[14] Edgeworth, F. Y. (1885). Observations and statistics. An c,.sav on
the theory of errors of observation and the first principlei of
statistics. Transactions of the Cambrid•ge Philosophical Socieft
14, 138-169.

[15] Edgeworth, F. Y. (1886). Problems in probabilities. Philosophicai
,a~azine 22 (Fifth Series), 371-384.



[16] Edgeworth, F. Y. (1887a). On discordant observation!.. Phi.lsophical
Lanaýziqne. 23 (Fifth Series), 364-375.

[17] Edgeworth, F. Y. (1887b). The choice of means. Philoso.plhical
aazine_ 2_4 (Fifth Series), 268-271.

[18] Edgeworth, F. Y. (1888). On a new method of reducing observations
relating to several quantities. Philosophical Magazine 25
(Fifth Series), 184-191. -

[19) Edgeworth, F. Y. (1893). Exercises in the calculation of errors.
Philosopphical Maqazine 36 (Fifth Series), 98-I11,

[20] Eisenhart, C. (1961). Boscovih and the comnbination of observations.
Chapter 7 in R. J. Boscovich Studies of His Life and Work,
(ed. L. L. WhyteT.": "- VAo1T6i '-d .- e-- - i i."-CFTi T 'eT1963
by Fordam University Press, New York)

[21] Eis~nhart, C. (1964). The meaning of "least" in least squares.
Journal of the Washinqton Academy- of Sciences 54, 24-33.

[22] Eisenhart, C. (1971). The development of the concept of the
best mean of a set of measurements from antiquity to tile
present day. 1971 A.S.A. Presidential Address.

[23] Ellis, R. L. (1844). On the method of leist squares. Transactions
of the Ca mb d e Philosophical Society 8, 204-219.

[24] Encke, J. F. (1834). On tile method of least squares. Translated
from the German in Scientific Memoirs, Selected from tile Trans-
actions of Forei gn _6-a-d-e-c--n--are-,-et-s
"an m -re - -u-rnaI o (Ed. R. T-aTorT.7-- -fV T 411-"

[25] Galton, F. (1875). Statistics by intercomparison, with remarks
on the law of frequency of error. Philosophical .Maazine 49
(Fourth Series), 33-46.

[26] Galton, F. (1889). Natural Inheritance. London: Macmillan.

[27] Galtun, F. (1902). The most suitable proportion between the values
of first and second prizes. Biometrika 1, 335-390.

[28] Gastwirth, J. (1966). On robust procedures. Journal of the American
Statistical Association 61, 929-948.

[29] Gauss, C. F. (1816). Bestimmung der Genauigkeit der Beobachtunqen.
In Carl Friedrich Gauss Werke, Band 4, 109-117, G(ttingen:
KMniq hien Gesellschaft der Wissenschaften (1880).



R o

(14

1,301 lil0ishor, J, W, L, (1PUP) , (oit tho lw of fwi1ilitv of orrors of
obs~orVat~ions, (111d on tho mothod of 1 east squdroi~s. Umeiivi ru o
the ljoya AtooicSocipty. I9 IP )

[31] Ulaishor , , W, L, (107!) . on tho reijoction of discordant ohmor,
vations, Monthly op ,troNotimo of' the tyl. Ast rome Socity 33,
391 -4W7,, ,,

[321 Glal shor, J. W. L. (1•7I4), Note on a papor by Mr, Stone, "On tho
rejection of discordant obso'vatIons". RN.thl- Notie of tho.Lal Astioeal Sou cloty 344, 2Li1,

[33] Grenbhorq, I , . (1968), Nonplwimotriv, Statistics: Ordor Statistics,
Articlo in the International rinyclopedina of tho Social Scionces,
Now York,, The i'&hW11 fiiV hC-paiy 'a ti-,1d 1

[34] Huber, P. J. (1964), Rohust estimation of a location parameter,
Annals of Mathumatical Statijtic1 3!, /3-101,

[35] Ilubhr, P. J, (197R), Robust statistics: a revlow. Annals of Mathe-
matical Statistics 43, 1041-1067,

[36] Iul me, H. R, and Symuis , L . S, T. (1939). The law of error and the
conlinatlon of observations, Monthly Notices of thoe Ro.yal._ ~~~~~As~tronomical c"a.Soc.iety 99g, 642-64T,"....I

L [37] Irvin, J. 0. (1925). On a criterion for the rejection of outlying
observations, Bliometrika 17, 238-250.

[38] Jeffreys, H, (193',.) . An al trnative to the rejection of observations,
Propeedinqs of th Royal Societ.y, Series A, 137, 78•8,

[39] Jeffreys, HI. (1939), The law of error and the colithInation of
observati ons. _.iJ .A ,iJASWtjt J. y]1 5L&h,.tyL.

_L~L~dOjij, Series A, 237, 231-271.

[40] Jevons, W. S. ( 1U74). The Principles of Science I, London:
t'acii I Ian. S1

[41] Jung, J. (195•) . on linear estimates defined by a continuous weiqht
function. Arkiv For Matematik [land 3 nr 15, 199-209.

[42] Laplace, P. S. de (1818), lDeuxieme Suipplemwent a la Thtorie
Anal ytiu e des Probab i 1 (f"s--F'1] sf T-u FO'rier. " 1 g 1 7 '6g=6
"-ITT euvr-vers" T : T) ,-N-ris: Imprimerie Royale (1847) ;
Pp, ,5- I n 11. :l-g::Q9IRlk.a. • iilusi. , Par i s:
Gauthier-Villars (1886).) --



i t

C. 1 Loido A, M. (I wit, O n thio mothod of I eis t %immso I n
Sotim Oootk in11 hmt o, 576-679 , NOW YOV0 Dofwk,

L44'1 Morritmn, M, (I 'IP)P, A list of writmnqs rolotinq to tJ imthod
of 1oait squatro•, with hiftori••l and critictil notm,
iriniatlon• of tlt Con octl cut, At du~ of A nd and Sctiecos

[461 I Nowcollb i, (1 a7 ) , Ih lseat'(o, Oil tho ItIti onof the Illoon, I,
Wshiinqton Ot•servltilons for 18I75 -, Apiltdi A Ii (puhlishod by

(461 Newcomb,, S, (I 88P), iicugsion and roeults of osorvations on
transit, s of Mercury from 1677 t~o 11181, Astrotitical .Papers 1,
363-4817,

[471 Nowcomb, S, (18810), LeonoI., fINW York,

Harper and lIrothers

[481] llowcw , S, (1 886) . A gonoral ied theory of the co0nbination of
observations so a( to obtain the best result. Allerican

Journal of Mathematics 8, 343-366-

(49] Nowcotil , S, (I 91a), Measures of the. vlocity of liqht mado under
the direction of thco Secretary of the Navy durinq the years
1880 to 1882, Astronomical Papers 2, 107-230.

[50] Newcont), S. (1891b), fll.cussion of observations of the transits of

Venus in 1761 and 1769. Astronomical Papaers 2, 259-405.

[51] Newcont , S, (1895). The Flements of the Four Inner Planets and the

Fun damenl tillon t~~~f\t~i~~.cu ý pi jFTetne -66 -t~th -NAIrT~dn
}',ph~i'e~ino•ri. and T t'c(iTg"A~or 1897.) Washinciton: rGovernnment

Printing Office.

[521 Newcomb , S, (I89') . Cataloque of fundamental stars for the epochs

1875 and 19400 reduced to an absolute system. Astronomical
LIuer , /7-403.

[53] Newcoor) , S. (1903). Tile Reminiscences of an Astronomer. tloston:
fHoughton Mifflin.

[54] flewcomb , S. (1912). Researches onl tile Mition of the moon, II.

Astronomical Pae.rs 9, 1-249.

[55] Oq[o]rodnikoff, K. (1928). On the occurrence of discordant observations

and a new nmthod of treating them. MontWhy Notices of the
Astronomical Socie 88, 523-532.

[56] Pearson, E. S. (1967). Studies in the history of probability and
statistics XVII. Some reflexions on continuity in the development

of mathematical statistics, 1805-1920. Biometrika 54, 341-355.

IL.. .m



26

[573 Pearson, K, (1902). Note on Franlcis Galton 's Problem. Mtometrika 1
390-399,

(50] Pearson, K. (1920). On the probable errors of frequency constants,
111, Biomotrika 13, 113-132.

[59] Pearson, K., witlh Pearson, M. V. (1931). On the mean character and
variance of a ranked individual, and on the mean and variance of
the intervals, between ranked individuals, I: Syiinetrical
distributions (normal and rectangular). Biometrika 23, 364-397.

[60] Peirce, B. (1852). Criterion for the rejection of doubtful
observations. Astronomical Journal 2, 161-163.

[61] Peirce, C. S. (1873). On the theory of errors of observations.
Report of the Superintendent of the United States Coast Survey

[C2] Poincar6, H. (1912). Calcul des Probabilit6s, Paris: Gauthier-
Vil lars.

[63] Rider, P. r<. (1933). Criterion for rejection of observations.
Washington University Studies - New Series, Science and Technology,
No. 8

[64] Sheppard, W. F. (1899). On the application of the theory of error to
cases of normal distribution and normal correlation. Philosophical
Transactions of the Royal Society_of London (Series A) 192, 101-167.

[65] Short, J. (1763). Second paper concerninq the parallax of the sun
determir.ed from the observations of the late transit of Venus;
in which this subject is treated of more at length, and the
quantity of the parallax more fully ascertained. Philosophical
Transactions of the Royal Society of London 53, 300-345.

[66] Stewart, C. A. (1947). P. J. Daniell. Journal of the London
Mathematical Society 22, 75-80.

[67] Stigler, S. 1. (1972). Laplace, Fisher, and the discovery of the
concept of sufficiency.

[68] Stone, E. J. (1873). On the rejection of discordant observations.
Monthly Notices of theRoyai Astronomical Society 34, 9-15.

[69] Wilks, S. S. (1943). Order statistics. Bulletin of the American
Mathematical Society 5, 6-50.


